Orb-Touch -> using deformation as a medium for human-computer interaction

This mini-post explores the use of deformation as a medium for human computer interaction. The question being asked is the following: can we use the shape of an object, and how it changes in time, to encode information? Here I present a deep learning approach to this problem and show that we can use a balloon to control a computer.

A comparison of robust regression methods based on iteratively reweighted least squares and maximum likelihood estimation

Time series data often have heavy-tailed noise. This is a form of heteroskedasticity, and it can be found throughout economics, finance, and engineering. In this post I share a few well known methods in the robust linear regression literature, using a toy dataset as an example throughout.

Cephalopod-inspired mechanical systems

With the exception of computer automation, the design of mechanical systems has not fundamentally changed since the industrial revolution. Even though our philosophy, aesthetics, and tools are far more refined and capable, we still design mechanical systems around bars, linkages, and motors. Similarly, electronic systems have largely been constrained to rigid circuits. These constraints are the central challenge being addressed by two emerging fields: soft robotics and soft electronics. In this post I’ll talk briefly about why non-rigid systems are interesting (and potentially useful), and present results from recent work that I published in Science Magazine on this topic.

Deep reinforcement learning for checkers -- pretraining a policy

This post discusses an approach to approximate a checkers playing policy using a neural network trained on a database of human play. It is the first post in a series covering the engine behind checkers.ai, which uses a combination of supervised learning, reinforcement learning, and game tree search to play checkers. This set of approaches is based on AlphaGo (see this paper). Unlike Go, checkers has a known optimal policy that was found using exhaustive tree search and end-game databases (see this paper). Although Chinook has already solved checkers, the game is still very complex with over 5 x 10^20 states, making it interesting application of deep reinforcement learning. To give you an idea, it took Jonathan Schaeffer and his team at UC Alberta 18 years (1989-2007) to complete to search the game tree end-to-end. Here I will discuss how we can use a database of expert human moves to pretrain a policy, which will be the building block of the engine. I’ll show that a pretrained policy can beat intermediate/advanced human players as well as some of the popular online checkers engines. In later posts we’ll take this policy and improve it through self play.